
REFINEMENTS FOR SESSION-TYPED CONCURRENCY
{ BY: JOSH ACAY ADVISOR: FRANK PFENNING } CARNEGIE MELLON UNIVERSITY

INTRODUCTION
Session types regulate the communication behaviour along chan-
nels between concurrent processes in a typed setting with message-
passing concurrency. Recently, a connection between session-types
and linear logic have been presented (through the lens of the Curry-
Howard correspondence), which gave rise to languages such as SILL
[1]. Languages incorporating linear session-types enjoy many desir-
able properties such as global progress, absence of deadlock, and race
freedom.
However, vanilla session-types are not strong enough to describe
more interesting behavioral properties of concurrent processes. Here,
we present a refinement type system in the style of [2]. Our system
combines intersections and unions with equirecursive types, which
is strong enough to specify and automatically verify many proper-
ties of concurrent programs. We have implemented a type-checker
for our system.

LANGUAGE
Session types are described by the following grammar:

A,B,C ::= 1 send end and terminate
| A⊗B send channel of type A and continue as B
| ⊕{labk : Ak}k∈I send labi and continue as Ai

| A(B receive channel of type A and continue as B
| &{labk : Ak}k∈I receive labi and continue as Ai

| A uB act as both A and B

| A tB act as either A or B

Below is a summary of the process expressions, with the sending con-
struct followed by the matching receiving construct.

P,Q,R ::= x← Px ; Qx cut (spawn)
| c← d id (forward)
| close c | wait c ; P 1

| send c (y ← Py) ; Q | x← recv c ; Rx A⊗B, A(B

| c.lab ; P | case c of {labk → Qk}k∈i

&{labk : Ak}k∈I , ⊕{labk : Ak}k∈I

Note that intersections and unions have no matching constructs since
they specify behavioral properties and not structure. Any well-typed
program can be given an intersection or a union type. We have three
main judgements:

[A ≤ B] A is a subtype of B

[Ψ ` P :: (c : A)] Process P offers along channel c the sessionA in the
context Ψ

[|= Ω :: Ψ] Process configuration Ω provides all the channels in Ψ

INTERSECTIONS AND UNIONS
Typing rules for intersections and unions are given below.

Intersections
Ψ ` P :: (c : A) Ψ ` P :: (c : B)

Ψ ` P :: (c : A uB)
uR

Ψ, c : A ` P :: (d : D)

Ψ, c : A uB ` P :: (d : D)
uL1

Ψ, c : B ` P :: (d : D)

Ψ, c : A uB ` P :: (d : D)
uL2

Unions
Ψ ` P :: (c : A)

Ψ ` P :: (c : A tB)
tR1

Ψ ` P :: (c : B)

Ψ ` P :: (c : A tB)
tR2

Ψ, c : A ` P :: (d : D) Ψ, c : B ` P :: (d : D)

Ψ, c : A tB ` P :: (d : D)
tL

EXAMPLE
We can define strings of bits using processes. Below, Bits is the type
of bit strings. emp represents the empty string, and zero and one
append the corresponding bit to the least significant position.

module BitString where
{− e p s i s t h e empty s t r i n g , z e r o and one append a l e a s t

s i g n i f i c a n t b i t −}
type Bits = +{eps : 1, zero : Bits, one : Bits}

{− B i t s t r i n g s in s t a n d a r d form (no l e a d i n g z e r o s) −}
type Std = +{eps : 1} or StdPos
type StdPos = +{one : Std, zero : StdPos}

eps : Bits and Std
‘c <- eps = do
‘c.eps
c lose ‘c

zero : Bits -o Bits
one : Bits -o Bits and Std -o Std

{− I n c r e m e n t a b i t s t r i n g by one . Note t h e h y p o t h e s e s t h a t
we added manual ly −}

succ : Std -o Std and {− h y p o t h e s e s −} StdPos -o StdPos and
+{eps : 1} -o StdPos

‘c <- succ ‘d =
case ‘d of
eps -> do wait ‘d; ‘c.one; ‘c.eps; c lose ‘c
zero -> do ‘c.one; ‘c <- ‘d
one -> do

‘c.zero
‘sd <- succ ‘d
‘c <- ‘sd

BIDIRECTIONAL TYPE CHECKING
Due to the non-structural nature of intersections and unions, there
is no obvious way to go from the declarative typing rules to a type-
checking algorithm. We therefore designed an algorithmic system,
on which the implementation is based.

We write the algorithmic typing judgement as Ψ
 P :: (c : α) where
α is a multiset of types, and Ψ maps a channel to a multiset. On
the right, a multiset is interpreted as a disjunction, and on the left,
it it interpreted as a conjunction. Additionally, subtyping is handled
exclusively at a forward (meaning subsumption cannot be applied
freely). Whenever we see an intersection on the left, we break it up
into two. We do the same for unions on the right.

The two systems are related through the following soundness and
completeness results:

Theorem 1 (Soundness). If Ψ
 P :: (c : α), then
d

Ψ ` P :: (c :
⊔
α).

Theorem 2 (Completeness). If Ψ ` P :: (c : A), then Ψ
 P :: (c : A).

METATHEORY
We give the standard progress and preservation theorems.

Theorem 3 (Progress). If |= Ω :: Ψ then either

1. Ω −→ Ω′ for some Ω′, or

2. Ω is poised.

Intuitively, a process configuration Ω is poised if every process in Ω is wait-
ing on its client.

Theorem 4 (Preservation). If |= Ω :: Ψ and Ω −→ Ω′ then |= Ω′ :: Ψ.

Proof of preservation is currently in progress.

REFERENCES

[1] Frank Pfenning and Dennis Griffith. Polarized substructural session
types. Draft, March 2015.

[2] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceed-
ings of the SIGPLAN ’91 Symposium on Language Design and Implementa-
tion, pages 268–277, Toronto, Ontario, June 1991. ACM Press.

[3] Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order pro-
cesses, functions, and sessions: A monadic integration. In M.Felleisen
and P.Gardner, editors, Proceedings of the European Symposium on Program-
ming (ESOP’13), pages 350–369, Rome, Italy, March 2013. Springer LNCS
7792.

